微信公衆号
手機官網
18852125868

當前位置: 首頁 > 新聞中心 > 行業動态

新聞中心

污水處理高級氧化技術方法,你知道幾種?

污水處理高級氧化技術又稱深度氧化技術,其基礎在于運用電、光輻照、催化劑,有時還與氧化劑結合,在反應中産生活性極強的自由基(如HO•),再通過自由基與有機化合物之間的加合、取代、電子轉移、斷鍵等,使水體中的大分子難降解有機物氧化降解成低毒或無毒的小分子物質,甚至直接降解成為CO2和H2O,接近完全礦化目前的高級氧化技術主要包括化學氧化法、電化學氧化法、濕式氧化法、超臨界水氧化法和光催化氧化法等。

1

化學氧化技術

污水處理化學氧化技術常用于生物處理的前處理。一般是在催化劑作用下,用化學氧化劑去處理有機廢水以提高其可生化性,或直接氧化降解廢水中有機物使之穩定化。

 

1.1 Fenton 試劑氧化法

該技術起源于19世紀90年代中期,由法國科學家H. J. Fenton提出,污水處理在酸性條件下,H2O2在Fe2+離子的催化作用下可有效的将酒石酸氧化[2],并應用于蘋果酸的氧化。長期以來,人們默認的Fenton主要原理是利用亞鐵離子作為過氧化氫的催化劑,反應産生羟基自由基式為:Fe2++ H2O2 ——Fe3++OH-+•OH, 且反應大都在酸性條件下進行。

 

在化學氧化法中,Fenton法在處理一些難降解有機物(如苯酚類、苯胺類)方面顯示出一定的優越性。随着人們對Fenton法研究的深入,近年來又把紫外光(UV)、草酸鹽等引入Fenton法中,使Fenton法的氧化能力大大增強。

 

郁志勇[3]等用UV + Fenton法對氯酚混合液進行了處理,在1h内TOC去除率達到83.2%。Fenton法氧化能力強、反應條件溫和、設備也較為簡單,适用範圍比較廣,但存在處理費用高、工藝條件複雜、過程不易控制等缺點,使得該法尚難被推廣應用。

 

1.2 臭氧氧化法

臭氧氧化體系具有較高的污水處理氧化還原電位,能夠氧化廢水中的大部分有機污染物,被廣泛應用于工業廢水處理中。臭氧能氧化水中許多有機物,但臭氧與有機物的反應是有選擇性的,而且不能将有機物徹底分解為CO2和H2O,臭氧氧化後的産物往往為羧酸類有機物。且臭氧的化學性質極不穩定,尤其在非純水中, 氧化分解速率以分鐘計[5]。在廢水處理中,臭氧氧化通常不作為一個單獨的處理單元,通常會加入一些強化手段,如光催化臭氧化、堿催化臭氧化和多相催化臭氧化等。此外,臭氧氧化與其他技術聯用也是研究的重點, 如臭氧/超聲波法[6]、臭氧/生物活性炭吸附法[7]等。

 

有文獻報道: 将臭氧氧化與活性炭吸附相結合可使廢水中的芳烴質量濃度降到0.002μg/L[8]。用臭氧氧化法去除工業循環水中的表面活性劑可有效增加城市污水處理場的淨化度、提高排水的水質,于秀娟等人[9]利用臭氧—生物活性炭工藝去除水中的有機微污染物也取得了較好的效果。由于臭氧在水中的溶解度較低,如何更有效地把臭氧溶于水中已成為該技術研究的熱點。

2

電化學催化氧化法

該技術起源于20世紀40年代, 有應污水處理用範圍廣、降解效率高、能量要求簡單、利于實現自動化操作,應用方式靈活多樣等優點。電化學催化氧化法既可用于難降解廢水的前處理措施來提高可生物降解性能,又可以作為難降解酚類廢水的深度處理技術,在優化的pH值、溫度和電流強度條件下,苯酚可以得到幾乎完全的分解。

 

針對高濃度、難降解、有毒有害的含酚廢水,傳統生物法和物化法已經失去了其優勢,化學氧化法又因其昂貴的費用阻礙了其推廣應用,電化學催化氧化法越來越受到人們的青睐,但其自身也存在一些問題,如電耗,電極材料多為貴金屬,成本較高及存在陽極腐蝕,指導其推廣應用的微觀動力學和熱力學研究尚不完善等。

3

濕式氧化技術

濕式氧化,又稱濕式燃燒,是處理高濃度有機廢水的一種行之有效的方法,其基本原理是在高溫高壓的條件下通入空氣,使廢水中的有機污染物被氧化,按處理過程污水處理有無催化劑可将其分為濕式空氣氧化和濕式空氣催化氧化兩類。

 

3.1 濕式空氣氧化法

最早研制開發濕式空氣氧化(Wet Air Oxidation, 簡稱WAO)法并實現工業化的是美國的Zimpro公司,該公司已将WAO工藝應用污水處理于烯烴生産廢洗滌液、丙烯腈生産廢水及農藥生産廢水等有毒有害工業廢水的處理。WAO技術是在高溫(125~320℃)高壓(0.5~20MPa)條件下通入空氣,使廢水中的高分子有機物直接氧化降解為無機物或小分子有機物。

 

使用濕式空氣氧化技術對樂果生産廢水進行預處理,有機磷的去除率高達95%,有機硫的去除率高達90%。Zimpro公司的WAO工藝處理效率高、反應時間短,但由于該技術要求高溫高壓,所需設備投資較大,運轉條件苛刻,難于被一般企業接受,因而配合使用催化劑從而降低反應溫度和壓力或縮短反應停留時間的濕式空氣催化氧化法近年來更是受到廣泛的重視與研究。

 

3.2 濕式空氣催化氧化法

濕式空氣催化氧化(Catalytic Wet Air Oxidation,簡稱CWAO) 法是在傳統的濕式氧化處理工藝中加入适宜的催化劑使氧化反應能在更溫和的條件下和更短的時間内完成。從而可降低反應的溫度和壓力,提高氧化分解能力,加快反應速率,縮短停留時間,也因此可減輕設備腐蝕、降低運行費用。濕式空氣催化氧化法的關鍵問題是高活性易回收的催化劑。CWAO的催化劑一般分為金屬鹽、氧化物和複合氧化物3類,按催化劑在體系中存在的形式,又可将濕式空氣催化氧化法分為均相濕式催化氧化法和非均相濕式催化氧化法。

 

(1)均相濕式催化氧化化法。在均相濕式催化氧化法中,由于催化劑(多為金屬離子) 是可溶性的過渡金屬鹽類,這些鹽類以離子形式存在于廢水中,在離子或污水處理分子的水平上通過引發氧化劑的自由基反應并不斷地再生而對水中有機物的氧化反應起催化作用。在均相濕式催化氧化法中由于催化劑在分子或離子水平上獨立起作用,因而分子活性高,使得氧化效果較好。但由于均相濕式催化氧化法中的催化劑是以離子形式存在,較難從廢水中回收和再利用,且易造成二次污染。

 

(2)非均相濕式催化氧化法。非均相濕式催化氧化是向反應體系中加入不溶性的固體催化劑,其催化作用是在催化劑表面進行,催化劑的比表面積的大小對有機物的降解速率影響很大。由于固體催化劑的組成種類及廢水性質的不同,濕式催化氧化的效果也不同。在多相濕式催化氧化法中,由于固體催化劑不溶解,不流失,活化再生及回收都較容易,因此其應用前景十分廣闊。

4

超臨界水氧化技術

超臨界水氧化技術是濕式空氣氧化技術的強化和改進,是由美國MODAR公司于1982年開發成功的,其原理是利用超臨界水作為介質來氧化分解有機物。它同樣是以水為液相主體,以空氣中的氧為氧化劑,于高溫高壓下反應。但其改進與提高之處就在于利用水在超臨界狀态下的性質,水的介電常數減少至近似于有機物與氣體,從而使氣體和有機物能完全溶于水中,相界面消失,形成均相氧化體系,消除了在濕式氧化過程中存在的相際傳質阻力,提高了反應速率,又由于在均相體系中氧化态自由基的獨立活性更高,氧化程度也随之提高。超臨界水是有機物和氧的良好溶劑,有機物在富氧超臨界水中進行均相氧化,其反應速度很快,在400~600℃下,幾秒鐘就能将有機物的結構破壞,反應完全、徹底,使有機碳、氫完全轉化污水處理為CO2和H2O [11]。超臨界水氧化技術由于其反應迅速、氧化徹底而越來越受到人們的關注,如何通過催化劑來降低反應的溫度和壓力或縮短反應停留時間是本領域的一個研究熱點。目前常用的催化劑大多是應用于濕式催化氧化工藝的催化劑,尋找對超臨界水氧化技術具有廣譜催化性能的催化劑是該技術推廣中的一個難點。

5

光催化氧化技術

光催化氧化技術是在光化學氧化技術的基礎上發展起來的。光化學氧化技術是在可見光或紫外光作用下使有機污染物氧化降解的反應過程。自然環境中的部分近紫外光(290~400nm )極易被有機污染物吸收,在有活性物質存在時即發生強烈的光化學反應,從而使有機物降解。但由于反應條件所限,光化學氧化降解往往不夠徹底,易産生多種芳香族有機中間體,成為光化學氧化需要克服的問題。

 

自1976 年Carey 等首先采用TiO2光催化降解聯苯和氯代聯苯以來,光催化氧化技術的研究熱點就轉化到了以TiO2為催化劑的光催化氧化降解有機污染物這一方向上來。

 

由于光催化氧化技術設備結構簡污水處理單、反應條件溫和、操作條件容易控制、氧化能力強、無二次污染,加之TiO2化學穩定性高、無毒、價廉,故TiO2光催化氧化技術是一項具有廣泛應用前景的新型水處理技術。

6

超聲波氧化法

聲化學的發展使人們越來越關注其在水及廢水處理中的應用。超聲波氧化(ultrasonic oxidation) 的動力來源是聲空化,當足夠強度的超聲波(15 kHz —20 MHz) 通過水溶液,在聲波負壓半周期,聲壓幅值超過液體内部靜壓,液體中的空化核迅速膨脹;在聲波正壓半周期,氣泡又因絕熱壓縮而破裂,持續時間約0.1μs。破裂瞬間産生約5000 K和100 MPa的局部高溫高壓環境,并産生速率為110 m/s 的強沖擊微射流。

 

超聲波氧化采用的設備是磁電式或壓電式超聲波換能污水處理器,通過電磁換能産生超聲波。實驗室内使用較多的是輻射闆式超聲波儀、探頭式以及NAP反應器等。超聲波氧化反應條件溫和,通常在常溫下進行,對設備要求低,是應用前景廣闊的無公害綠色化處理污水處理技術。


【返回】